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Abstract
Migration of substructures in complex fluids at meso-, micro- and nano-level
is described in the hydrodynamic range. We show that the primary mechanism
ruling this kind of transport leading to clustering and self-organization of
microstructures is the competition between substructural actions from place to
place. We make use of abstract morphological descriptors so that our treatment
is independent of the specific features of each special material substructure.

PACS number: 82.70.−y

1. Introduction

Complex fluids are characterized by a prominent influence of their substructure at meso-,
micro- and nano-level on the behaviour of macroscopic flows. Examples of such an
influence, exerted by means of substructural interactions, are topological transitions in vortex
structures [1].

Complexity in fluids appears in different aspects. We can list some cases. (1) Populations
of stick molecules embedded in a melt characterize nematic liquid crystals; in the smectic
phase they are organized in superposed layers, each of which with translational order (far from
the defect core), an order broken across layers. (2) Two-phase flows admitting phase changes
display diffuse interfaces. (3) Polymeric fluids are constituted by long flexible molecules
smeared in a ground simple fluid. Such molecules may also be arranged as stars or may
be polarizable (as in polyelectrolyte polymers). (4) Polarization can also be recognized in
ferrofluids. (5) Additives appear as families of particles smeared in a fluid. They interact with
the underlying liquid and also, possibly, with one another, depending on their density, so that
they render the fluid complex.

In all these cases, when one tries to represent the morphology of a complex fluid to
describe flows, e.g. at kinematical level, one realizes that the standard format in which just a
position in space is assigned to each material element (which is thus ‘collapsed’ in its centre of
mass) is insufficient. In fact, in complex fluids each material element is not morphologically
equivalent to an indistinct sphere. It is a system (roughly speaking a ‘box’ with at least one
family of substructures, say, molecules embedded in a melt as in the case of liquid crystals),
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so that appropriate morphological descriptors need to be introduced as order parameters. To
this end, elements of the projective plane are used to represent nematic order in liquid crystals
[2, 3]; a scalar is added in the smectic phase to account for the thickness of layers [4, 5]; second-
order tensors may describe local independent deformations of flexible molecules in polymeric
fluids [6, 7]; polarization in ferrofluids is represented by vectors [8]; more complicated tensor
structures may help in modelling the behaviour of superfluid helium [9].

Morphological descriptors enter in the constitutive structure of the energy to account for
energetic changes associated with substructural events. Also, the gradient of the morphological
descriptors is involved when weakly non-local effects (due, e.g., to the presence of diffused
interfaces or branching of substructures) are present. Typical expressions of the energy are of
Ginzburg–Landau type. The derivatives of the energy with respect to the morphological
descriptor and its gradient represent respectively self-interactions ‘within’ each material
element and ‘contact’ interactions (of gradient type) between neighbouring material elements.
At each place they satisfy an appropriate local balance (Capriz balance).

Moreover, individuals or groups that belong to families of substructures pertaining to
each material element may migrate from place to place and coherent structures may appear
along flows as a consequence of clustering and self-organization. A typical example is the
segregation of phases in two-phase flows where coarsening is ruled by the Cahn–Hilliard
equation [10]. Other coherent structures appear in polymer fluids where the cooperation
of families of polymeric chains generates drag reduction in turbulent flows [11]. A similar
phenomenon accrues in fluids with bubbles or with small particles dispersed finely.

Here we show that the primary mechanism ruling the migration of substructures is the
competition between substructural interactions from place to place. Such a mechanism is
universal in the sense that it is independent of (i) the specific geometric features of each
substructure and (ii) the constitutive structure of the fluid. Actually, such a result points
out that migration of substructures may occur even in perfect fluids: in certain sense, the
inhomogeneity of the energy distribution, induced by substructural events, generates energy
gradients that ‘drive’ the walk of substructures from place to place. Viscosity is not crucial
in describing the migration mechanism although viscous effects may have a prominent role in
driving substructures, and vice versa; phenomena of migration may be cast in hydrodynamic
equations at macroscopic level as ‘apparent’ viscosity. When present, in fact, viscosity
contributes additionally to the migration of substructures. A paradigmatic example is the case
of polymeric fluids where the friction between the polymeric macromolecules and the ground
liquid play a prominent role in the migration of the macromolecules themselves.

In the argument we propose below, a key role is played by a mechanical dissipation
inequality. Its use is justified by the following circumstance: a configurational entropy can be
related to morphological changes in families of substructures and, when substructures migrate,
such changes tend to increase it.

If µ denotes the chemical potential, we may write the configurational entropy flux h
related to substructural migration as hi = −µAij (grad µ)j . The second-order tensor A (of
components Aij ) denotes mobility of material substructures. We disregard here heat flux
(although it could be accounted for easily).

The main technical result here is the derivation of an evolution equation for the time rate
of the local numerosity1 of substructures involving substructural interactions.

1 By the term numerosity we indicate the ‘number’ of substructures per unit volume, by presuming that the volume
chosen as representative unitary cell can be significantly defined in each special case. For example, in liquid crystals,
the numerosity is the density of stick molecules with end-to-tail symmetry in a unit volume of the fluid. In other
words, the unit volume is the representative volume element (the material element) the characteristic geometric and
constitutive features of which we attribute to a generic point.
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We proceed without considering any specific substructure. We assign to each material
element a coarse grained morphological descriptor ν of its substructure. To develop
calculations we do not need to specify the nature of ν. We require only that it be an
element of a finite-dimensional paracompact manifold M without boundary. In this way we
follow the general format of multifield theories for complex materials [9, 12, 13]. In fact,
the mechanics associated with maps between manifolds constitute a unifying framework for
models of condensed matter physics, at least in the hydrodynamic range.

The results summarized below are on one hand a unifying framework for describing
migration of substructures in the classes of complex fluids we know and, on the other hand,
a tool to analyse possible exotic situations in potentially new complex fluids that industrial
requirements may drive to produce.

In the case of two-phase fluids, ν reduces to a scalar quantity (coincident with the mass
density of one phase) and the associated energy is double well with the addition of a quadratic
part in grad ν: the evolution equation we derive here reduces to the Cahn–Hilliard one or
the generalization of it derived in [14]. Equations describing transport of polymer chains
(ν becomes a second-order symmetric tensor) can also be recovered as special cases.

The issue discussed here is rather subtle because the program to analyse migration of
substructures forces us to change a basic point of the abstract format of multifield theories
describing complex bodies at a continuum level. In fact, in multifield theories each material
element is considered as a system (in a certain sense a sort of minute machinery) but it is
not foreseen that parts of it migrate from element to element (see [9, 13]). In contrast, here
the material element is intended as a container of at least one family of substructures; then
the morphological descriptor has (perhaps remotely) a statistical nature. In the presence
of migration, an evolution equation for the numerosity of a given family is then necessary
besides the balances of standard and substructural interactions. By indicating with n = ñ(ν)

the numerosity of substructures of the type ν at a given point and assuming for the free energy
ψ of the fluid a constitutive structure of the type ψ = ψ̃(ι, ν, grad ν), with ι being the specific
volume, in the absence of substructural kinetic energy and external fields acting directly on
the substructure, such an evolution equation reads

ṅ = −div

(
A grad

(
1

‖Dνn‖2
T ∗

ν M
〈(div(∂grad νψ) − ∂νψ),Dνn〉T ∗

ν M

))
, (1)

where A is the mobility as above, (div(∂grad νψ) − ∂νψ) ∈ T ∗
ν M and 〈·, ·〉T ∗

ν M is a scalar
product over T ∗

ν M with ‖·‖T ∗
ν M being the associated norm. Generalizations of this equation

are discussed below. They include external fields acting directly on the substructure (as, e.g.,
electric fields on polarizable fluids), possible inertia effects pertaining to the substructure itself
and effects of bulk and substructural viscosity.

In summary, the characteristic features of the approach presented here are as follows.
(i) We use general descriptors of the morphology of substructures to render the result
independent of any particular geometric feature that may be prominent in special cases.
(ii) Since such descriptors are elements of an abstract manifold, in general, we cannot postulate
a priori an integral balance of substructural interactions as can be done in the scalar case
(see [14]) or when the manifold coincides with a linear space (see discussions in [16]).
(iii) We assume the validity of an equation of continuity for the numerosity of a population
of substructures pertaining to each material element and relate the flux of substructures to the
configurational entropy flux (which is generated, to a wide extent, by the loss of information
about substructural states due to the migration of substructures).
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The analyses below show how substructural interactions influence the time rate of the
numerosity of substructures2.

2. Morphological descriptors in the kinematics of complex flows

The fluid occupies a regular3 region B of the three-dimensional Euclidean point space E3. A
spatial (Riemannian) metric g is pertinent to B and depends smoothly on places so that we

have a field B � x
g̃�−→ g = g̃(x) ∈ Sym+(TxB, T ∗

x B). The determinant of g is indicated
by ι and represents the specific volume of the fluid. As usual in continuum mechanics, each
material element is ‘collapsed’ in a point x ∈ B. However, the assignment of the sole place to
each material element (as usual in the standard hydrodynamics picture of simple flows) is not
sufficient to get information about the substructural morphology of complex fluids. We furnish
such information at a coarse grained level by means of a descriptor ν of the morphology of
(say) the characteristic macromolecule or the population of macromolecules at x. We do not
specify the nature of ν to assure generality to our result. Examples of concrete physical cases
are presented later.

To develop subsequent calculations, we require only that ν be an element of a manifold
M that we assume to be finite dimensional, paracompact and without boundary. We then have
a sufficiently smooth map ν̃, namely

B � x
ν̃�−→ ν = ν̃(x) ∈ M, (2)

that assigns to each x the pertinent morphological descriptor ν of the geometrical features of
the substructure inside the material element at x.

For any motion developing along a time interval [0, t̄] where (2) changes as B × [0, t̄] �
(x, t)

ν̃�−→ ν = ν̃(x, t) ∈ M, we write

B × [0, t̄] � (x, t)
ṽ�−→ v = ṽ(x, t) ∈ TxB (3)

for the standard velocity field and

B × [0, t̄] � (x, t)
υ̃�−→ υ = υ̃(x, t) ∈ TνM (4)

for the rate field of the morphological descriptor ν.
When we want to account for migration of substructures, we need to add another

information: the numerosity n of substructures with a certain morphology ν within each
material element. We then have a sufficiently smooth map ñ such that

B × [0, t̄] � (x, t)
ñ�−→ n = ñ(ν) = ñ(ν̃(x, t)) ∈ R

+. (5)

2 Notations. Some standard notations are summarized here. Let A and B be tensors of the type (p, q) of components,

e.g. A
i1 ...ip
j1 ...jq

and B
i1 ...ip
j1 ...jq

. We denote with A · B the standard scalar product given by A
i1 ...ip
j1 ...jq

B
i1...ip
j1...jq

. In particular,
if A and B are second-order tensors, we denote with AB the product which contracts only one index and bears a
second-order tensor; for example, we have (AB)ij = AikB

k
j . If A is a tensor of the type (p, q), with p, q > 0, and

B is another tensor of the type (r, s), with r, s > 0 and r < p, s < q, or (r = p, s < q) or (r < p, s = q), we
indicate with AB (with some slight abuse of notation with respect to the product between second-order tensors) the
product which contracts all the indices of B; in particular, if p = 0 or q = 0 we consider valid the notation when
r = 0 and s = 0 respectively. Given two vectors a and b, a ⊗ b denotes their tensor product. In particular, if A
and B are second-order tensors we have AB · (a ⊗ b) = AT a · Bb. For any region b of the space, ∂b represents its
boundary. For a couple of spaces A and B, Hom(A, B) is the space of linear transformations from A to B. Latin
indices i, j, k, . . . will indicate coordinate over a regular region B of the three-dimensional Euclidean point space
E3 while Greek indices α, . . . will denote coordinates in an appropriate atlas of an abstract manifold M. Moreover,
TνM is the tangent space to M at ν ∈M while T ∗

ν M is the relevant cotangent space at ν.
3 Here regularity is intended in the sense of D-regions [17].
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Here, the point of view is as follows. Within each material element we imagine at least
one family of substructures. The order parameter describes the morphology of each member
of a given family and n = ñ(ν) indicates how many individuals of the type ν are present.
Actually, one would be pushed to think of the morphological descriptor ν as an averaged
value over a population of substructures. This point of view is natural when M coincides
with or is embedded (isometrically) in a linear space. In contrast, by considering M as an
abstract manifold, the average of ν over a population of substructures could not make sense
(see remark 4). A way to avoid such a difficulty is the one followed here where we consider
separately each morphological descriptor ν and the numerosity of substructures within each
material element.

3. Standard and substructural interactions

Substructures may interact with each other so that relevant interactions should be accounted
for, represented appropriately and balanced. To focus ideas about substructural interactions,
the reader may think of dense or semi-dense polymer solutions when polymeric chains meet
and possibly ‘join’.

Roughly speaking, for general viscous complex flows, balance equations of standard
and substructural interactions result from generalizations of Navier–Stokes and Ginzburg–
Landau equations; they are, in fact, spatial representations of Cauchy and Capriz balances
respectively. There are various manners to derive and justify such balances of macroscopic
and substructural interactions. For the purpose of our developments, it is helpful to follow a
way in which the issues of representation of interactions and their balance are separated from
those arising out from the need to justify constitutive structures4. Such a point of view assures
widest generality to the interpretation of the results about migration. In fact, the abstract
classification of interactions and their balance is pertinent to a set of ‘classes’ of bodies, while
the specification of the functional dependence of such interactions on state variables implies
directly the selection of a specific class of bodies.

Representation of interactions and their constitutive structures are mixed in variational
approaches where Lagrangian or Hamiltonian densities are involved. To allow comparisons
and to clarify the point of view followed here, we recall briefly one of the possible variational
approaches to the mechanics of complex flows. For the sake of simplicity we focus attention
here on the simple case of perfect compressible complex fluids where in addition to the standard
law of conservation of mass, namely

∂tρ + div(ρv) = 0 (6)

with ρ being the mass density, a variational principle of the type

δ

∫
B×[0,t̄]

Ld3x ∧ dt = δ

∫
B×[0,t̄]

L̃(x, v, ι, ν, υ, grad ν) d3x ∧ dt = 0 (7)

is involved. In (7), L̃(·) is a sufficiently smooth function such that

L = 1
2ρ‖v‖2 + χ(ν, υ) − e(ι, ν, grad ν) − U(x, ν). (8)

In (8), U(·) is the potential of external interactions: it is the sum U1(x) + U2(ν) of
the standard gravitational potential U1(x) and the potential of external direct actions on the
substructure U2(ν) (for example, in the case of polarizable fluids U2(ν) accounts for the action
of external electric fields). Moreover, e(·) is the internal potential of matter fields while, when
kinetic energy k(ν, υ) can be attributed to the substructure, χ(·, ·) is the kinetic co-energy,

4 Such an approach is classical in continuum mechanics (see, for instance, the treatises [9, 18, 19]).
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i.e. a C1 scalar function with such a Legendre transform supυ∈TνM(∂υχ(ν, υ) · υ − χ(ν, υ))

with respect to υ that the ‘sup’ is attained at a unique point in the domain of χ(ν, ·) in
TνM at each ν and coincides with the substructural kinetic energy, namely k(ν, υ) =
∂υχ(ν, υ) · υ − χ(ν, υ). The product ∂υχ(ν, υ) · υ is associated with the natural pairing
between T ∗

ν M and TνM.
As regards the variations involved, we consider first a one-parameter family of smooth

automorphisms s �−→ fs ∈ Aut(B × [0, t̄]) which leaves invariant the time scale [0, t̄] and
is also smooth with respect to the parameter s. We indicate by u = ũ(x, t) the derivative
d
ds

fs
∣∣
s=0(x, t) and assume that

ũ(x, t)|∂B = 0, ∀t ∈ [0, t̄], (9)

ũ(x, 0) = ũ(x, t̄ ) = 0, ∀x ∈ B. (10)

We then select δx = u, δv = u̇ (where the dot means total time derivative) and also

δι = ι div u. (11)

For the variation of the morphological descriptor we choose a smooth field

B × [0, t̄] � (x, t)
w̃�−→ w = w̃(x, t) ∈ TνM (12)

such that

w̃(x, t)|∂B = 0, ∀t ∈ [0, t̄], (13)

w̃(x, 0) = w̃(x, t̄) = 0, ∀x ∈ B. (14)

Then, we select δν = w and

δ grad ν = grad w + (grad ν) grad u, (15)

or, more clearly in components,

(δ grad ν)αi = (grad w)αi + (grad ν)αj (grad u)
j

i . (16)

With these premises, appropriate Euler–Lagrange equations for the variational principle
(7) are then given by

b + div T = ρv̇, (17)

where v̇ = ∂ tv + (v · grad)v, and

β − z + divS = d

dt
∂υχ(ν, υ) − ∂νχ(ν, υ). (18)

Equations (17) and (18) are the balances of standard and substructural interactions respectively.
Commonly, I call (18) Capriz balance (see [12]).

Notations used in (17) and (18) are

bi = (∂xU(x, ν))i, (19a)

T
j

i = (ι∂ιe)δ
j

i − (grad ν)∗α
i (∂grad νe)jα, (19b)

with δ
j

i being the components of I, the unit second-order tensor, (grad ν)∗ ∈ Hom(T ∗
ν M, T ∗

x B)

the adjoint of grad ν and

βα = (∂νU(x, ν))α, (20a)

zα = (∂νe)α, (20b)

Sj
α = (∂grad νe)jα. (20c)
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Remark 1. The term (grad ν)∗∂grad νe in (19b) rules the possible transfer of energy between
macroscopic and substructural scales, a transfer that may induce topological transitions in the
structure of flows. To recognize this kind of effect, let us indicate with ω the vorticity, namely
ω = curl v, and evaluate the curl of (17) by taking into account (19b). We get (see also [1])

dω

dt
= (ω · grad)v + grad ι × div T − ι curl(div TE), (21)

where we have used the notation TE = (grad ν)∗∂grad νe. In the incompressible limit, (21)
reduces to

dω

dt
= (ω · grad)v − ι curl(div TE). (22)

The term curl(div TE) measures the direct influence of material substructures on the alteration
of vortex structures. For two-dimensional flows of incompressible perfect complex fluids, in
fact, the equation for the transport of vorticity becomes

dω

dt
= −ι curl(div TE) (23)

so that, in contrast to simple incompressible perfect fluids, ω is in general not conserved unless
(i) there exists a scalar field B � x �−→ π(x) such that grad π = div TE or (ii) there exists a
second-order tensor-valued fieldB � x �−→ A(x) ∈ R

3⊗R
3 such that curl(TE)T = (curl A)T .

This situation is a typical circumstance of topological transition in vortex structures generated
by the influence of material substructures. Of course the possibility of these topological
transitions in complex fluids is independent of the geometrical shape and the constitutive
nature of specific substructures. The independence is pointed out by the abstract way in which
one obtains the result.

3.1. The general case

Let us forget perfect fluids and follow a procedure that allows us to obtain balance equations
able to account for viscous effects.

We call part any subset b of B which has the same regularity properties of B itself. We
indicate by P(B) the set of parts of B and by Velc(B) the set of pairs of sufficiently smooth
fields of the type (3) and (4), namely ṽ and υ̃, with compact support in B.

For us the power is a map P : P(B) × Velc(B) → R such that P(·, v, υ) is additive and
both P(b, ·, υ) and P(b, v, ·) are linear. For any part b we are interested in representing the
power of external interactions over b, a power that we indicate by Pext

b
(v, υ) for any fixed b

(considered as a control volume). Such interactions are of bulk and contact nature, the latter
exerted across the boundary ∂b of b; the outward unit normal to such a boundary is indicated
by n. Under the suggestions of the treatment leading to (17)–(20), we claim the existence of
vector and tensor fields (we omit the dependence on time for notational convenience)

B � x
b̃�−→ b̄ = b̃(x) ∈ T ∗

x B ∼= R
3, (24)

B � x
T̃�−→ T = T̃(x) ∈ Hom(T ∗

x B, T ∗
x B) ∼= R

3 ⊗ R
3, (25)

B � x
β̃�−→ β̄ = β̃(x) ∈ T ∗

ν M, (26)

B � x
S̃�−→ S = S̃(x) ∈ Hom(T ∗

x B, T ∗
ν M), (27)

such that

P(b, v, υ) = Pext
b (v, υ) =

∫
b

(b̄ · v + β̄ · υ) d3x +
∫

∂b

(Tn · v + Sn · υ) dH2, (28)
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where dH2 is the two-dimensional Hausdorff measure over ∂b. Substructural interactions
are measured by means of volume (β̄) and surface (Sn) densities as in the case of standard
interactions. β̄ may account for both possible substructural inertia effects and interactions due,
for example, to electromagnetic fields acting on the substructure. As usual the standard bulk
forces b̄ are assumed to be the sum of non-inertial and inertial parts. S is called microstress.
Roughly speaking, Sn is a ‘generalized traction’; the product Sn · υ measures the local power
exchanged between two adjacent parts at x through a surface of normal n, as a consequence
of the change of the substructure at the same point. T is the standard Cauchy stress tensor5.

We now impose SO(3) invariance for Pext
b

(v, υ) which corresponds to invariance with
respect to changes in classical observers.

In the common usage of classical mechanics, an observer is a ‘representation’ of the
ambient space and the time scale. Here, a more enlarged notion is needed. For us, an observer
is a representation of all geometrical environments necessary to describe the morphology of a
body and its motion (thus the time scale). When morphological descriptors are involved, as
in the abstract format of multifield theories describing the mechanics of complex bodies, the
notion of observer includes the representation of the manifold M of substructural shapes (see
also [16]). General changes in observers involve the action of the group of automorphisms on
the ambient space (here the three-dimensional Euclidean point space E3) and the action of an
arbitrary Lie group G over M (see discussions in [24]). When we restrict our attention to the
observers that we call classical, the time parametrized family of automorphisms acting on the
ambient space is the one of isometries so that, as usual, if v∗ is the value of the velocity v after
such a change ruled by SO(3), we get

v∗ = v + c(t) + q̇(t) × (x − x0), (29)

where c(t) is the translational velocity, constant in space, x0 is a point chosen arbitrarily and
q̇× ∈ so(3) at each t. Moreover, still for such changes in observers, we consider that the same
copy of SO(3) acts also over M and we indicate with υ∗ the rate υ measured after the change
in observer, so that we get

υ∗ = υ + Aq̇, (30)

where, at each ν ∈ M,A(ν) ∈ Hom(R3, TνM) and is represented by a matrix with three
columns and a number of lines equal to dimM; in particular, if νq denotes the value of ν

after the right action of SO(3) over M, we have A = dνq

dq

∣∣
q=0 where q is connected with

Q ∈ SO(3) by the exponential map, so that Q = exp(−eq) with e being Ricci’s permutation
index.

5 The proof of the existence of T (without resorting to constitutive issues and energy as in Lagrangian–Hamiltonian
approach) is standard and can be obtained invoking directly balance of tensions over special parts of B even in very
weak conditions (see general results in [20]). Moreover, when substructures are not considered and Velc(B) contains
just standard velocity fields ṽ(·), the addition of appropriate analytical conditions satisfied by the power (besides
the additivity over parts and the linearity with respect to rates) allows one to get its representation in terms of T
by using techniques of geometric measure theory (see [21]). The proof of the existence of S (in the sense used
for T) is a rather subtle issue. In fact, the standard direct technique used for T cannot be utilized, unless M is
embedded in a linear space. The field x �−→ (Sn)(x) = S(x)n(x) takes values on T ∗M = ⋃

ν∈M T ∗
ν M which does

not coincide with a linear space although each T ∗
ν M is a linear space. As a consequence, averages of Sn over special

polyhedral subregions (the ones necessary to get T) do not make sense. A proof of the existence of S is available with
the additional assumption that M is embedded in a linear space [22]. However, even if we consider the isometric
embedding of M in a linear space (an embedding preferable from a physical point of view because it preserves the
quadratic part of the substructural kinetic energy), the embedding is not unique and its choice becomes strict matter
of modelling. A proof based on analytical restrictions on P(b, v, υ) and techniques of geometric measure theory
is not yet available even if I am personally optimistic about its future availability. Perhaps techniques proposed by
Segev (see, e.g., [23]) could constitute another way to solve the problem without resorting to embeddings.
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As a basic axiom we require that Pext
b

be invariant under changes in observers ruled by
the action of SO(3), for any b, i.e.

Pext
b (v∗, υ∗) = Pext

b (v, υ), (31)

for any choice of c(t), q̇(t) and b.
By using (29) and (30), thanks to the arbitrariness of c and q̇, we obtain the standard

integral balance of forces∫
b

b̄ d3x +
∫

∂b

Tn dH2 = 0, (32)

and a generalized integral balance of moments∫
b

((x − x0) × b̄ + A∗β̄) d3x +
∫

∂b

((x − x0) × Tn + A∗Sn) dH2 = 0, (33)

with A∗(ν) ∈ Hom(T ∗
ν M, R

3). From (32), the common pointwise balance of forces

b̄ + div T = 0 in B (34)

follows thanks to the arbitrariness of b, while, from (33), we get

A∗(β̄ + divS) = eT − (gradA∗)S. (35)

with e being Ricci’s alternator. This last condition implies that the co-vector eT−(gradA∗)S
with components eijkT

kj − (gradA∗)αijS
j
α belongs to the range of the linear operator A∗ at

each ν. Two pieces of information can be then obtained from (35): (i) there exists an element
of the cotangent space of M at ν, say z, such that

A∗z = eT − (gradA∗)S, (36)

and (ii) z is just equal to the co-vector β̄ + divS, namely6

β̄ − z + divS = 0 in B. (37)

As regards inertial components, they are included in the bulk interactions b̄ and β̄ that
coincide respectively with b + bin and β + βin, where b and β are non-inertial (objective)
components, as in (17), (18), and bin and βin their inertial counterparts. The identification of
bin and βin follows by imposing that their power is equal to the opposite of the rate of the
kinetic energy for any part b chosen fixed in time, namely

d

dt

∫
b

(
1

2
ρ‖v‖2 + k(ν, υ)

)
d3x +

∫
b

(bin · v + βin · υ) d3x = 0. (38)

The time derivative in (38) and the identification of analogous terms imply bin = −ρv̇
and the need of the existence of such a function χ(ν, υ) with the properties described
in previous section that βin = − d

dt
∂υχ(ν, υ) + ∂νχ(ν, υ). Substructural inertia is often

negligible unless the substructure oscillates at very high frequencies.

Remark 2. By means of the integral balance (38), βin is determined unless a powerless
term. A case in which such a kind of term becomes important is the one of spin fluids

6 For the procedure used here to derive balance equations, the case of scalar-order parameters appears pathological
because A vanishes. Actually, one could make use of spherical second-order tensors as an intermediate step; by
obtaining (37) first, one then may reduce straight away to the scalar case.
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(or hyperfluids) in which ν is selected to be a vector ς constrained to have unit length. Such a
constraint implies that the inertia is just of rotational nature. By assuming equal to 1 possible
constitutive constants, let us select βin = −ς × ς̇ which is evidently powerless. In addition,
if the fluid is incompressible and the free energy ψ(ς, grad ς) is chosen to be of the form
1
2‖grad ς‖2, with unitary constitutive constants even in this case, the balance of substructural
interactions becomes

ς̇ = −ς × 
ς, (39)

which coincides with the Landau–Lifshitz–Gilbert equation when only gyromagnetic effects
are accounted for (see also [25]).

Remark 3. In the Hamiltonian setting, one may show that (34) and (37) satisfy not only
SO(3) invariance but also complete covariance associated with general changes in observers
ruled by the action of the group of automorphisms and a generic Lie group over the ambient
space and M respectively. The covariance of (34) is a classical result (see [26]) while the
covariance of (37) is shown in [24, 27]. Additionally, in [24] the covariance of the surface
balances of actions due to the interaction between diffuse interfaces and sharp discontinuities
endowed with surface energy is also obtained.

Remark 4. In the general setting sketched here, we cannot postulate a priori an integral
version of (37) by assuming it as a primitive balance of substructural interactions, unless we
presume—even tacitly—that M is (isometrically) embedded in a linear space, select a special
embedding and includes it in the model as a ‘constitutive’ element—in fact, since M is finite
dimensional, the embedding exists always but it is not unique. The basic reason has been
underlined in footnote 4 but we recall it here adding details. Actually, if one considered
naively the integral version of (37), one would have an integral over some arbitrary part b

of the difference of β̄ − z and an integral over the boundary ∂b of Sn. However, the field
x �−→ β̄(x)− z(x) takes values on the cotangent bundle of M, namely T ∗M = ⋃

ν∈M T ∗
ν M,

which does not coincide with a linear space though each ‘component’ T ∗
ν M of it is a linear

space. The same remark holds for x �−→ (Sn)(x) as underlined in footnote 4. Consequently,
the possible integrals involving β̄ − z and Sn would not be defined. In fact, we know from
elementary calculus that, although the domain of integration of integrals as indicated above
could be even a manifold, the integrand must take values in a linear space in order for the
integral to be defined. This is the reason that would push us to embed M in a linear space if
we would like to postulate a priori an integral balance of substructural interactions.

4. Migration of substructures

4.1. A continuity equation for the numerosity

When migration of substructures comes into play, local variations of numerosity of
substructural individuals must be accounted for. Here we assume (i) to treat complex fluids
isolated with respect to the exchange of mass with the external environment and (ii) that
phenomena of coalescence or nucleation of substructures are absent. In other words, we
consider substructural elements as distinct individuals. Under these assumptions, for any part
b, the numerosity satisfies an integral balance of the type

d

dt

∫
b

n d3x +
∫

∂b

ω · n dH2 = 0, (40)
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where ω is the flux vector of substructures across ∂b and vanishes at the boundary ∂B. If we
choose b as a control volume fixed in time, its arbitrariness implies

ṅ + div ω = 0, (41)

where7 ṅ(ν(x, t)) = Dνn · (∂tν + (grad ν)v), the product being associated with the natural
pairing between TνM and T ∗

ν M.
In writing formally the local continuity equation for the numerosity, we assume implicitly

a certain regularity for ñ(·). However, physical circumstances imposing irregularity to ñ(·)
might require that (41) be considered in a distributional sense.

Remark 5. Two prominent situations may occur. (i) There are many families of substructures
and ν is associated with elements of only one of them. (ii) There is just one family of
substructures. In case (i) the migration can develop in a way in which molecules of the family
associated with ν move and are substituted by molecules of other families so that mass is
locally conserved and one should consider (6) separately from (41). In case (ii) we have a sort
of two-component fluid (the ground liquid and the embedded (macro-)molecules) and (41)
coincides with the conservation of mass of one component when multiplied by the (constant)
mass ρ̄ of the single macromolecule. In this way, the flux ω is strictly a mass flux ρ̄ω̄.

4.2. The role of substructural interactions in the evolution of numerosity

For the sake of simplicity we restrict our treatment to isothermal processes and consider an
isothermal version of the second law prescribing that for any part b chosen as above and for
any choice of the rates involved

d

dt

∫
b

ψ d3x −
∫

∂b

h · n dH2 − Pext
b (v, υ) � 0, (42)

where ψ denotes the Helmholtz free energy and h is the flux of entropy due to the ‘loss
of information’ about substructural morphology induced by the migration of substructures.
When one uses a coarse-grained description of substructures, one loses information about
substructural shapes (see in the case of polymer configurations the results of Ferrari and
Lebowitz [28]). Migration increases such a loss of information hence the associated entropy
that we call here configurational just to recall the connection with local changes in substructural
shapes (see also [28, 29]). We represent such an effect of increment of entropy due to a loss of
information (in isothermal conditions) as due to the flux h at a gross level and assume that h
is linked with the flux of numerosity by means of the chemical potential µ as in the standard
case of mass transport, namely

h = µω. (43)

By selecting b fixed in time as a control volume and arbitrary, the time derivative in (42),
Gauss theorem and (41) allows us to get from (42) a local dissipation inequality8:

ψ̇ + µṅ − ω · grad µ − (T · grad v + S · grad υ + z · υ) � 0. (44)

At thermodynamical equilibrium we presume (tentatively) that Cauchy stress T,
microstress S and self-force z admit the constitutive structures
7 Dνn indicates the derivative of n with respect to ν.
8 We recall that the validity of local balances of standard and substructural interactions implies

Pext
b (v, υ) = P int

b ≡
∫

b

(T · grad v + S · grad υ + z · υ) d3x,

where P int
b

is called internal power.
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T = T̃(ι, ν, grad ν, µ, grad µ), (45)

z = z̃(ι, ν, grad ν, µ, grad µ), (46a)

S = S̃(ι, ν, grad ν, µ, grad µ), (46b)

and that also ψ and ω have the form

ψ = ψ̃(ι, ν, grad ν, µ, grad µ), ω = ω̃(ι, ν, grad ν, µ, grad µ) (47)

The time derivative in (44) implies

(ι∂ιψI − T − (grad ν)∗(∂grad νψ)) · grad v + (∂νψ − z + µDνn) · υ

+ ∂µψµ̇ + ∂grad µψ ·
·

grad µ +(∂grad νψ − S) · grad υ − ω · grad µ � 0 (48)

where we have used

ι̇ = ι div v = ιI · grad v, (49)

a relation coming from Euler formula (see (11)), and
·

grad ν= grad υ + (grad ν) grad v. (50)

Once a state (ι, ν, grad ν, µ, grad µ) has been selected, we may choose arbitrarily

grad v, υ, grad υ, µ̇ and
·

grad µ so that we get

∂µψ = 0, ∂grad µψ = 0, (51)

since (42) is assumed to hold for any choice of the velocity fields. Such a result prescribes
that ψ cannot depend on the chemical potential and its gradient together with T and S which
must satisfy the restrictions

T = ι∂ιψI − (grad ν)∗(∂grad νψ), S = ∂grad νψ. (52)

Moreover, z cannot depend on grad µ but may depend on µ and we get

z − µDνn = ∂νψ. (53)

In addition we find that ω · grad µ � 0, i.e. the flux of substructures goes along the gradient
of chemical potential, so that ω must be of the form

ω = A grad µ (54)

(ωi = Aij (grad µ)j in components), with A the mobility, such a positive definite second-order
tensor that A = Ã(ι, ν, grad ν, µ). Circumstances may suggest that A be coincident with a
spherical tensor aI, with a being an appropriate constant.

Although the formal expression of ω in (54) is coincident with the one used in standard
mass transport, we have here a basic difference because we obtain that in general the mobility
is influenced by the shape of the substructure and its spatial inhomogeneity due for example
to the branching of substructures.

So far we have used the mechanical dissipation inequality as a criterion of selection of
physically admissible constitutive equations, by following a classical point of view [30]. Of
course, another possible use of the second law is as a criterion of stability, but it is not needed
here.

From (53) we get

µ = 1

‖Dνn‖2
T ∗

ν M
〈(z − ∂νψ),Dνn〉T ∗

ν M, (55)
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where 〈·, ·〉T ∗
ν M is a scalar product defined in each T ∗

ν M and ‖·‖T ∗
ν M being the associated

norm. By inserting (37), (55) and (54) in (41), we obtain the evolution equation for the
numerosity:

ṅ = −div

(
A grad

(
1

‖Dνn‖2
T ∗

ν M
〈(β̄ + divS − ∂νψ),Dνn〉T ∗

ν M

))
, (56)

which is the natural extension of (1) when external fields and possible substructural inertia
effects are accounted for.

The structure of equation (56) suggests the physical interpretation anticipated in the
introduction: the basic mechanism ruling migration of substructures is (or, more prudently,
seems to be) the competition of substructural interactions from place to place.

In particular, the gradient of the projection of substructural interactions along the derivative
of the numerosity with respect to ν, namely Dνn is an essential ingredient. We may regard

the map M � ν
ñ�−→ n = ñ(ν) ∈ R

+ through the level sets it induces over M, so that Dνn

can be considered a normal to the boundary of these sets and 〈(β̄ + divS − ρ∂νψ),Dνn〉T ∗
ν M

is then the associated flux of substructural actions across the same boundary, conjugated with
the migration of substructures.

Equation (56) renders more perspicuous and completes the preliminary results in [31].

Remark 6. In the absence of migration and for purely reversible processes, when ψ coincides
with the potential e used in (8), the constitutive restrictions (52) and (53) coincide with (19b),
(20b) and (20c). Moreover, in this case Capriz balance reduces to Ginzburg–Landau equation
for appropriate choices of the explicit structures of the energy (see [16]).

4.3. The simplest substructural viscosity

Far from thermodynamical equilibrium, rates come into play in constitutive equations and
account for internal friction. More generally, they measure the removal from thermodynamical
equilibrium. However, the second law (even in its mechanical form (42)) excludes their
presence in the list of entries of ψ . We would have, in fact, terms multiplied by accelerations
without any counterparts in terms of measures of interactions, so that the assumed validity of
(42) for any choice of rates would imply that these terms vanish. For example, if one selected
ψ = ψ̃(ι, ν, grad ν, υ), then in (48) one would add only a term of the type ∂υψ · υ̇. However,
the arbitrariness of the choice of υ̇ would imply ∂υψ = 0, i.e. ψ cannot depend on υ. By
taking into account this type of restriction, a reasonable way to proceed is to imagine that
the measures of interactions can be divided additively into thermodynamic equilibrium (eq)

and non-equilibrium (ne) parts, the former determined by ψ = ψ̃(ι, ν, grad ν) and the latter
strictly dissipative.

The simplest case occurs when only substructural viscosity is present within each material
element so that in (46) only (46b) changes as

z = zeq + zne = z̃eq(ι, ν, grad ν, µ) + z̃ne(ι, ν, grad ν, µ, υ), (57)

and zeq satisfies (53), while zne is strictly dissipative in the sense that zne · υ � 0 for any choice
of υ. Such an assumption implies (as a special case)

zne = l̃z(ι, ν, grad ν, µ)υ� := lzυ
�, (58)

with l̃z(·) being a positive scalar function9 and υ� being the 1-form associated with υ.
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Consequently, (56) becomes

ṅ = −div

(
A grad

(
1

‖Dνn‖2
T ∗

ν M
〈(β̄ + divS − ∂νψ − lzυ

�),Dνn〉T ∗
ν M

))
. (59)

4.4. Macroscopic and gradient substructural viscosity

Besides the simplest case of substructural viscosity described above, more complicated
situations arise when macroscopic and substructural viscosity are present and cooperate with
each other to drive material substructures. In this case, thermodynamic non-equilibrium parts
of T and S occur so that we have T = Teq + Tne and S = Seq +Sne, with the equilibrium parts
depending also on grad v, υ, grad υ. A procedure analogous to the one used above would get
more complicated expressions involving grad v and grad υ. However, it is important to note
that, although standard viscosity and gradient substructural viscosity may enhance or obstruct
the migration of substructures, the basic mechanism producing such a kind of transport is the
one illustrated by (56), and may accrue even in perfect complex fluids. Additional viscosity
alters just the landscape, but the source mechanism is the one induced by substructural
interactions. This is the key physical significance of the developments presented here.

Remark 7. In the absence of substructural viscosity but in the presence of macroscopic
viscosity, the balance of standard forces (34) reduces to a generalized form of Navier–Stokes
equations.

5. Special cases of physical interest

The unified description of migration of substructures proposed here can be applied to a wide
class of cases with physical concreteness. Some of them are summarized in the present section.
In addition, the proposed framework can be considered as a tool to describe even some possible
exotic physical circumstances that are beyond the cases listed here.

5.1. Two-phase fluids: Cahn–Hilliard equation

In the case of two-phase fluids in which phase transformations are allowed, ν can be selected
as the mass fraction ν of one of the two components, so that (41) coincides with the continuity
equation for the mass density of arbitrarily one of the two components. In other words,
ñ(ν) = ñ(ν) = ν. We restrict further our attention to the circumstance in which the following
assumptions apply.

(i) The fluid is incompressible (possibly at rest).

9 Actually, when one inserts in (48) the decomposition zeq + zne by presuming that only zeq can be associated with
the free energy, after the reasoning leading to (52) and (53), the local form of the mechanical dissipation inequality
(48) reduces to

zne · υ + ω · grad µ � 0.

Thanks to the arbitrariness of υ and grad µ, an appropriate solution of the previous inequality would be

zne = Azυ + A′
z grad µ, ω = A grad µ + A′υ,

with Az ∈ Hom(TνM, T ∗
ν M), A′

z ∈ Hom(R3, T ∗
ν M), A ∈ Hom(TνM, R

3), and, as in (54), A ∈ R
3 ⊗ R

3. One
obtains the case in (58) when A′

z and A′ vanish while Az is equal to lzgM, with gM the metric over M so that
υ� = gMυ. Note that the previous inequality does not imply that each addendum be semi-definite positive—only
the sum must be greater than or equal to zero, as a consequence of the second law. In this sense, if we consider zne

strictly dissipative, the inequality zne · υ � 0 is additional to the second law and is a sort of anholonomic constraint.
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(ii) β̄ = 0, i.e. direct bulk actions over the phases (different from the gravitational field) are
absent.

(iii) ψ = ψ̃(ν, grad ν) = g(ν) + 1
2b|grad ν|2, with g(·) being a two-well energy accounting

for spinodal decomposition and b a constant.
(iv) A reduces to a constant a > 0.

In this case, the evolution equation (56) reduces to the Cahn–Hilliard equation

ν̇ = a
[g′(ν) − b
ν], (60)

with g′(ν) = dg

dν
(ν).

The treatment discussed here reduces in this case to the one presented by Gurtin in [14].
Actually, just in reading that lucid paper I realized that the question could have a general
aspect so that I tried to develop the description of the possible migration of rather arbitrary
substructures in complex fluids.

It is worth noting that the Cahn–Hilliard equation can be derived (in a certain sense
alternatively) in a pure thermodynamical setting by exploiting the second law and Liu’s
method of constraints, as proposed by Ván [15].

5.2. Nematic liquid crystals

In the case of nematics, ν is an element of the unit sphere with the identification of antipodes
[2, 3] (in other words ν is a direction n because nematic stick molecules do not have distinct
head and tail so that M is identified with the projective plane P 2). In this case, we (i) consider
the ground fluid incompressible and (ii) assume for ψ the simplest expression of Frank’s
potential, namely 1

2γ (grad n ·grad n) with γ being a constant. Leaving ñ(·) without an explicit
expression, considering β̄ = 0 and A as a constant a, we get

ṅ = −a


(
1

‖Dnn‖2
T ∗

n P 2

〈γ
n,Dnn〉T ∗
n P 2

)
. (61)

5.3. Sketch of further special cases

To develop further applications of the general framework presented above to concrete cases,
basic ingredients are the choices of a morphological descriptor ν (hence of the structure of
M) and of an explicit expression of the free energy in each situation envisaged. We list below
some examples.

(a) Polymeric fluids. ν coincides with a second-order tensor R = r ⊗ r, where r is a
stretchable end-to-end vector describing the generic polymer chain (see [6, 11] for specific
expressions of the energy). In polymer stars one should add a scalar order parameter to
account for the radius of gyration of each star-shaped molecule.

(b) Polyelectrolyte polymers. Two morphological descriptors are involved: the above-
mentioned second-order symmetric tensor R and a vector p belonging to a ball B|p|max

in R
3 and representing the local polarization of polymer chains; the radius of the ball is

|p|max, the saturation value of the polarization. In this case, the application of an external
electric field induces local substructural interactions that may enhance or obstruct the
possible migration of polymeric molecules.

(c) Liquid crystals in the smectic-A phase. In such a phase, liquid crystals exhibit a layered
structure, each layer containing stick molecules that tend to be aligned orthogonally to
the layer interface. If we aim to describe the possible migration of stick molecules across
layers, we should consider a scalar function w(x, t, τλ) parametrizing layers (with λ a



6838 P M Mariano

length scale and τ running in a set of integers) in addition to the vector-order parameter n
describing nematic order. In particular, far from the defect core we have n = grad w

|grad w| . In
this case, a reasonable form of the energy is given by

φ = φ̃(ι, w, grad w) = φ̄(ι) + 1
2γ1(|grad w| − 1)2 + 1

2γ2(div n)2, (62)

with γ1 and γ2 being material constants. The term (|grad w| − 1)2 accounts for the
compression of layers, while (div n)2 describes the nematic phase and is the first addendum
of the three-constant Frank’s potential. In these conditions and in the absence of viscosity,
the evolution equation becomes

ṅ = −div

(
A grad

(
1

|Dwn|2 (div ∂grad wφ − ∂wφ)Dwn

))
. (63)

(d) The hydrodynamics of granular materials may be described in the multifield setting
by using both scalar [32] and tensor [33] morphological descriptors. The results about
migration of substructures might be applied in this setting to analyse segregation in
granular media, a problem for which essential results have obtained in [34] by using a
kinetic approach.
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